Coherent cancellation of backaction noise in optomechanical force measurements
نویسندگان
چکیده
منابع مشابه
Coherent quantum-noise cancellation for optomechanical sensors.
Using a flow chart representation of quantum optomechanical dynamics, we design coherent quantum-noise-cancellation schemes that can eliminate the backaction noise induced by radiation pressure at all frequencies and thus overcome the standard quantum limit of force sensing. The proposed schemes can be regarded as novel examples of coherent feedforward quantum control.
متن کاملQuantum backaction and noise interference in asymmetric two-cavity optomechanical systems
We study the effect of cavity damping asymmetries on backaction in a “membrane-in-the-middle” optomechanical system, where a mechanical mode modulates the coupling between two photonic modes. We show that when the energy difference between the optical modes dominates (i.e., in the adiabatic limit) this system generically realizes a dissipative optomechanical coupling, with an effective position...
متن کاملWeak Force Measurement in Bistable Optomechanical System
One of the main milestones in the study of opto-mechanical system is to increase the sensitivity of weak forces measurement up to the standard quantum limit. We have studied the detection of weak force under a bistable condition in red detuned regime. In this case, dynamics of the system behaves asymptotically similar to stationary state and applying external force affects phase and fluctuation...
متن کاملCoherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors
Thermal noise is a limiting factor in many high-precision optical experiments. A search is underway for novel optical materials with reduced thermal noise. One such pair of materials, gallium arsenide and aluminum-alloyed gallium arsenide (collectively referred to as AlGaAs), shows promise for its low Brownian noise when compared to conventional materials such as silica and tantala. However, Al...
متن کاملA hybrid on-chip optomechanical transducer for ultrasensitive force measurements.
Nanoscale mechanical oscillators are used as ultrasensitive detectors of force, mass and charge. Nanomechanical oscillators have also been coupled with optical and electronic resonators to explore the quantum properties of mechanical systems. Here, we report an optomechanical transducer in which a Si(3)N(4) nanomechanical beam is coupled to a disk-shaped optical resonator made of silica on a si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2014
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.89.053836